4 research outputs found

    Tactile thermal oral stimulation increases the cortical representation of swallowing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS) is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of individual SAM data was performed using a permutation test.</p> <p>Results</p> <p>Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition.</p> <p>Conclusion</p> <p>In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.</p

    Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of individual SAM data was performed using a permutation test.</p> <p>Results</p> <p>Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation.</p> <p>Conclusion</p> <p>The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.</p

    Sensory Input Pathways and Mechanisms in Swallowing: A Review

    Get PDF
    Over the past 20 years, research on the physiology of swallowing has confirmed that the oropharyngeal swallowing process can be modulated, both volitionally and in response to different sensory stimuli. In this review we identify what is known regarding the sensory pathways and mechanisms that are now thought to influence swallowing motor control and evoke its response. By synthesizing the current state of research evidence and knowledge, we identify continuing gaps in our knowledge of these mechanisms and pose questions for future research
    corecore